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Abstract - Generally, an engineering design problem has multiple objective
functions. Some of these problems can be formulated as multiobjective geometric
programming models. On the other hand,often in the real world, coefficients
of the objective functions are not known precisely. Coefficients may be
interpreted as fuzzy numbers, which lead to a multiobjective geometric
programming with fuzzy parameters. In this paper, we solve the multiobjective
geometric programming problem with fuzzy parameters by applying a linear
ranking function. The linear ranking function is used to compare fuzzy numbers.
Finally, a numerical example 1s given,
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INTRODUCTION

The last years have witnessed a considerable interest in information fusion process, related
to the improved sophistication of information and communication sciences and their
tremendous social impact. In particular, a mathematical study of fuzzy optimization problem
has been systematically carried out under the domination of fuzzy set theory. For a
primer on fuzzy optimization models and methods and the recent developments one may
refer to [6,16,17,21]. One of the most important branches of optimization 1s geometric
programming GP. Geometric programming 1s an optimization technique developed to
solve a class of nonlinear optimization problems especially found in engineering design
and manufacturing.

The theory of GP first emerged in 1961 by Duffin and Zener. They discovered that
many engineering design optimization problems have an objective function consisting
of a sum of component costs. Sometimes, the objective function can be minimized almost
by inspection under certain constraints where each term of the constraints are in the form
of posynomial. The first publication on GP was published by Duffin and Zener in 1967
[13]. To solve algebric nonlinear programming problems subjected to linear or nonlinear
constraints, several extensions proposed by different authors {2,3,4,7.8,9,10,15,18,29].
Generally, an engineering design problem has multiple objective functions. To extend

geometric programming problem, Cao Bing-Yuan [7,9] first transforms it to a fuzzy state
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problem including the advancement of its fuzzy geometric programming model. Moreover,
Cao Bing-yuan considers the situation where the coefficients are fuzzy [8,10]. Another
approach which use the theory of fuzzy set to solve multiobjective GP problems is
introduced by Verma [28]. Fuzzy programming is a useful method to solve multiobjective
GP problems. Biswal [3] developed fuzzy programming with nonlinear membership
functions approach to multiobjective GP problems. Bit [4] developed fuzzy programming
with hyperbolic membership functions to solve GP with several objective functions. In
this paper, which is a more completed version of [19], we first extended the pareto optimality
concepts. Then the weighting method and the constraint method are used to

obtain a solution for multiobjective GP problems with fuzzy parameters.

PRELIMINARIES
- RANKING FUNCTIONS

Many ranking methods can be found in fuzzy literature. Bass and Kwakernaak [1] are
among the pioneers in this area. Bortolan and Degani [5] have reviewed different ranking
methods. According to Chen and Hwang [11] the methods are categorized into four different
groups. To examine the methods of each group see [11]. In spite of the existence of a
variety of methods, no one can rank fuzzy numbers satisfactorily in all cases and situations
[22].

Now, let @ be a fuzzy number, i.e. a convex normalized fuzzy subset of the real line
R whose membership function is piecewise continuous. In this paper, we denote the set
of all fuzzy numbers by F(R). There are two important topics in the real world applications
of the fuzzy set theory: arithmetic operations on fuzzy numbers and comparison of fuzzy
numbers, which usually follow arithmetic operations. For arithmetic operations on the
fuzzy numbers, we apply the extension principle proposed by L. A. Zadeh. Extension
principle is used by many authors [25]. However, there is no common approach for
comparing fuzzy numbers. Indeed, there are different approaches for ranking fuzzy numbers.
A simple method for ordering the elements of F (R) is to define a ranking function R: F'
(R) -» R which maps fuzzy numbers to the real line, where a natural order exists. We then

define the fuzzy number ordering as follows:

a%zS iff R(&)=R (b) (1)
a;E iff R(a)> R (D) (2)
G =b iff R(@= R ()
aiz? iff R(a)+R(b) (4)
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where & and b belong to F (R). Also, & 1% b if and only iféifz .
It is obvious that there can be more than one ranking function.

Example 2.1. Roubens ranking function is defined as [14]:
|

R(a) =_é./(inf&a+ sup d,) d,. (5)
0

where g, is an a-level set of a.

Let a = (aL, al, o, B) be a trapezoidal fuzzy number, defined by:

1 if ab < x<al,
l—aLO;x if aL—OLSxSaL,

a(x) =
1—x—'a—(—] if aU<x£aU+B,

0 Otherwise.

According to the above definition, it is easy to show that R(a) = —é—(aLJr al+ % B - )
(14].
Definition 2.1. By a linear ranking function we mean a ranking function R:F(R)~» R

such that R (ki + ) =kR (@) + R (b),a, b € F (R) and k€ R. Tt is easy to show that
Roubens ranking function 1s linear [14].

Remark 2.1. In the remainder of this paper we assume that R is a linear ranking
function.

By a fuzzy function, f{., &) : R” > F(R), we mean an ordinary function from R”
to F(R), with a vector of fuzzy numbers, a = (a,, ..., a,), as parameters. Specially by a
polynomial fuzzy function, we mean an ordinary polynomial function with fuzzy numbers

~ ~ Nk
as parameters, for example: /'(x, &) = Z:zl an _x’.

n=1""n

Definition 2.2, Let R be a linear ranking function. A fuzzy function f'(x, &) defined
on a nonempty convex set S in R” is said to be

a) R-convex if

JOXp+(1-0) x, 3) £ Af (%1, 8) + (1 - 3) f(x,,8)
VX[, Xy €Sand v A€[0, 1],

b) R-concave if
f()\xl +(]')‘) Xza a)iAf(xlz 5)“‘ (1 _A)f(X2> a)
VX, Xy €Sand v A€T0,1].

- NOTATIONS
In this section, some notations are introduced which are used in the remainder of this
paper.

Letx = (x), x5, ., X)) ¥ = 0y, ¥yo s 1) € R and %= (X X5, s X)),
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§=01, 7, T, € FR), then:
xzy Uf xjzvi, j=1,2,..k
x>y iff x>y, & x=vy,

x>y iff x;>yi, j=1,2,..,k

%2? iff i,-zfz‘, j=1,2, ..k

x>y iff x>y & x#9,

~R N R~ 5 R

x>y iff x;>yi j=1,2,..k
R R

Moreover, a function h : (F([R))k = F(R) is called:
* R-monotone increasing iff:

x>y h(X)> h(y
27 h ()2 h ),

* R-strong monotone increasing iff:

X259 h (9> h (),

« R-strict monotone increasing iff:
X >>y oh (X)> h (V).
A (®)=#(y)

We shall say that the real number t corresponds to the fuzzy number 7 if t = R(Z).

GP AND MULTIOBJECTIVE GP WITH FUZZY PARAMETERS
- GPWITH FUZZY PARAMETERS

In the following, we define the geometric programming (GP) problem with fuzzy
parameters and propose a method for solving it.

Definition 3.1. Let f(x, a) and g; (X, b ), i 1,2, .., m, be polynomial fuzzy functions,
where a = (41, ..., Np) and f = (55- s by ) represent vector of fuzzy numbers involved
inf(x,a)and g; (x, b) respectlvely Then the mode!

max: Z = f(x, a)
R

s.tog;(x,5)<0, i=1,2,..m, (6)
x>0,
is called a geometric programming with fuzzy parameters (GPF) problem.
Definition 3.2. Any set of xj which satisfies the set of constraints of GPF is called a
solution for GPF. Let O be the set of all solutions of GPF. We shall say that x*€ 0 is an
optimal solution for GPF if f(x, ) < f(x*,a) forallx€Q.

The following theorem 1s similar to Lemma 3.1. of [20] for solving fuzzy number
linear programming problems. Here, we use it to reduce any GPF to a GP problem in the

classical form.
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Theorem 3.1. The following problem and GPF are equivalent:

max: z = f (X, a),

s.t. g; (%, bz') <0, i=1,2,..m, (7
x > 0,
where a = (a,, ..., ap) and b; = (b”, . bPi)’ are vectors of real numbers corresponding to

the fuzzy vectors @ = (), ..., d,) and b= (b, ..., Eip) , tespectively.
Proof: It is straightforward, by using linearity of ranking function.

- MULTIOBJECTIVE GP WITH FUZZY PARAMETERS

In this section, we consider a multiobjective GP problem in which all decision parameters
are fuzzy numbers and investigate some methods to solve it.
Definition 3.3. The model

max: Z = (f] (x,8)), f5 (x,89), ..., fi (x,8})),
R

st g; (X, 5)<0, i=1,2,..m, (8)
R x>0,
where x € R", ] (x,4)), f> (%, 89), .., fi (x,8)) and g (x, b)), gy (x, by), ...,
9y, (%, by,) are fuzzy polynomial functions from R"to F (R), is called a multiobjective
geometric programming with fuzzy parameters (MGPF) problem.

It is noted that the objectives are non-commensurable and inherently conflicting in
nature in a multiobjective decision making environment.

Set X={xcR" gi(x, 5)<0, i=1,2,..,mx>0}. Xis the feasible solution set for
MGPEF. Since there are fuzzy numbers as parameters in the objective functions of (8),
we extend the concept of pareto optimality in classical multiobjective GP as follows.

Definition 3.4. x* € X is an R-pareto optimal solution for (8) if and only if there does
not exist x € X such that ( 7; (x, a)), I%fl'- (x*,d,) for all iand f; (x,3)) ;,; fj (x*, éj) for at
least one ;.

A relaxed definition of R-pareto optimality is as follows:

Definition 3.5. x* € X is a weak R-pareto optimal solution for (8) if and only if there
does not exist x € X such that f; (x, éi),[? J; (x*,a) forall ;.

Theorem 3.2. Let h:(F (R))¥ > F(R) and x* be an optimal solution for

max: Z =i (f} (x,8)), 5 (x,3,), ..., f} (x,8))),
R

st xeX, 9)
then:

a) if h is R-strict monotone increasing on F(R))¥, then x* is a weak R-pareto optimal
solution for MGPF.
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b) if h is R-strong monotone increasing on (F(R))¥, then x* is an R-pareto optimal
solution for MGPF.
c) if h is R-monotone increasing on (F(R)¥, and x* is the unique optimal solution to

(9), then x* is an R-pareto optimal solution for MGPF.
Proof:

* For case (a), suppose that x* is not a weak R-pareto optimal solution for (9). Then,
there exists x € X such that f; (x, a)), ;f: (x*, &) forall i. So we have

(1,87, (%89, 5 [l (X, 80 ;> (f1 5% 2)), fH (x*,85), ..., i (X5, 8))),
Now since 4 is R-strict monotone increasing on F(IR))¥, we have
h (fl (Xi 51), f2 (X, 5’2)5 ey fk (Xi ak)); h (fl (X*’ 5‘]_)7 fz (X*’ 5’2)’ cee fk (X*’ ak))

This contradicts the optimality of x*.

In supporting our proof, we suppose that x* is not an R-pareto optimal solution for
(9). Then, there exists x € X such that

/i (%, 5!-)1? , f;(x*,a;) forall i and f; (x,é-) ; J; (x*,a)) for at least one j.

In other words,

(fl (X, él)a f2 (Xa 52)1 S fk (X, 5/{)); (f] (X*: 51): f2 (X*: 52)1 ) fk (X*: ‘E‘ik))

Hence:

« For case (b) suppose # is R-strong onotone increasing on F(R))*, then, we have
h (fl (Xa 5’])7 f2 (X: 52); L) fk (X7 ék)); h (f] (X*3 51): fz (X*a 52)5 L) fk (X*) ak)):

which contradicts the optimality of x* .

« For case (c), suppose h is R-monotone increasing on (F(IR))*. Then, we have

h(J] (X, 89), fp (X,89), .oy Sy (%, 5/{))}% h(fy (x%2a)), o (x*,8y), ..., fi (x*,8))),

which contradicts the fact that x* is the unique optimal solution to (9).

TWO APPROACHES FOR SOLVING MGPF

The well-known scalarization methods provide an approach for obtaining pareto optimal
solutions to multiobjective programming problems. In this section, we apply scalarizationtype
methods to characterize R-pareto optimal solutions for MGPE.

~- WEIGHTING METHOD

The weighting method to obtain an R-pareto optimal solution of MGPF 1s to solve the
weighting problem formulated by taking the weighted sum of the objective functions
of the original MGPE. Thus, weighting problem for MGPF could be defined by:
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- k .
max: ZEZi=1wifi (x, a[-),
s.t. X € X, (10)

where w = (W, Wy, ..., W)= 0 is the vector of weighting coefficients assigned to the
objective functions. The relationship between the optimal solutions of the weighting
problem (10) and R-pareto optimal solutions of MGPF can be characterized by the following
theorems.
Theorem 4.1. Let x* be an optimal solution of the weighting problem (10) for some

w— 0.

a) If w >0, then x* is a weak R-pareto optimal solution for MGPF.

b) If w >> 0, then x* is an R-pareto optimal solution for MGPF.

¢) If x* is a unique optimal solution for (10) and w > 0, then x* is an R-pareto optimal

solution for MGPF.

Proof: [f we set 7 (f; (,81), f5 (%,35), ., i (, &) = f_ W, f; (x,3,), then proof
may be directly derived from Theorem 4.2. o

Theorem 4.2. Assume that R is a linear ranking function and all fuzzy function f;
(x, &;) are R-concave and all fuzzy functions g; (x, 51‘) are R-convex, in the MGPF. If x*
is an R-pareto optimal solution of the MGPF, then there exists w > 0 such that x* is an
optimal solution for (10).

Proof: The proof is straightforward, if we use the linearity of ranking function R and
Theorem 4.9 of [25]. 0

By Theorem 4.1, among the other results, each x € X which 1s an optimal solution
of the weighting problem (10) for any w > > 0 is an R-pareto optimal solution for MGPF.

On the other hand, under the conditions of Theorem 3.3, at least one w > 0 is associated
with every R-pareto optimal solution, that causes the weighting problem (10) to have it
as an optimal solution.

Note that different methods exist to help the decision maker to assign weights to the
objective functions [12,23,24,26].

- CONSTRAINT METHOD

The constraint method for characterizing R-pareto optimal solutions is to solve the following
constrainted programing problem, which formulated by taking one objective function as

the objective function and letting the others to set inequality constraints.

max: z = 1 (%, ),
R
s.t. fiE) E, j=L2,k jEd (11
xe X,
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where Ej is the minimum acceptable fuzzy values for objectives corresponding to j + i .
Theorem 4.3. Let x* be an optimal solution of the constrainted problem (11) for some

Ej, j=1,2,...,kand j+i.

a) x* is a weak R-pareto optimal solution for MGPF.

b) If x* is a unique optimal solution for (11), then x* is an R-pareto optimal solution

for MGPE.
Proof:

a) If x* is not a weak R-pareto optimal solution for MGPF, then there exists x € X such
that ]} (x, 5]-), R> j} (x*,a;) forallj. Specially f;(x,a)) R> f; (x*,a)), which contradicts
the assumption that x* is an optimal solution for (11).

b) Let x* be a unique optimal solution for (11), which is not an R-pareto optimal solution
for MGPF, then there exists x € X such that fj (x, a;), RZfJ (x*, éj) for all j and

11 (%, a), = S (%, aj) , for at least one /. This means either
R

~.

s =2k jEi fi(xE) = f; (x*%,E),
R

>
R
<R28j, J=12, .,k j£i ]’i(x,éi)?ﬁ(x*,ét-),

which contradicts the assumption that x* is a unique optimal solution for (11).0

Theorem 4.4. If x* is an R-pareto optimal solution of the MGPF, then x* is an optimal
solution for (11) for some éj,j =1,2,.., kand j=i.

Proof: Suppose that x* is not an optimal solution for (11) for any Ej, j=12 .k
and j # i. Then, there exists x € X such thatj}- (x, éj), > Ej = jj (x*,8),;=1,2,..k j+
L f; (% &) R> f; (x*, &;). This contradicts the assumption that x* is an R-pareto optimal
solution of the MGPF. o

Thus, to find an R-pareto optimal solution for MGPF, we must select one of the
objectives for maximization subject to: Ej to be lower bounds on the other objectives to
form (11). Then, by Theorem 3.4, if x* is an optimal solution (unique optimal solution)
for (11), then x* 1s a weak R-pareto (R-pareto) optimal solution for MGPE.

It is noted that a different solution is generally achieved with the change of objective
function for optimizing it in the decision making context. Therefore, the noticeable task
in the constraint methed is selecting one objective function for optimization and the lower
bounds for the other objectives. It 1s a reasonable task for the decision maker. He or she
may determine them subjectively. Moreover, the decision maker may use the interactive
nature of the constraint method. In other words, the decision maker first configure the
problem to produce a candidate solution. Then, by examination of this solution, the decision
maker inputs information to another configuration that will lead to a better solution.
Repeating this pattern, the decision maker will sooner or later reach a point at which he
or she will stop (perhaps by losing patience with the procedure). Then, from the series of
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solution generated, the decision maker will pick the point with which he or she feels most
comfortable as the final solution [27]. For more details see section 8.5. of [27].

NUMERICAL EXAMPLE

To illustrate the use of constraint method to solve MPGEF, we consider the following
numerical example:
Find x,, X7, and X3, SO as to:

min :Z, §(39,41,1,1)x1_1x27x3_l +(18,22,2,2)x, %, +(19,22,3, 1) x, x, X, ,

. ~ I B | % % (12)
min :z, = (39,41,1,Dx " x; x; +(19,21,1,1) x7 x;,
1
= 1
st (0,2,1,)x7*x* +(2,6,2,2)x2 x3' 5(5,%,1,1),

X, ,x,,x, >0

Now, rewrite the problem as a maximization model. If the decision maker select the first
objective for maximization and add the second objective as a constraint with as its lower
bound, then we have the follm_ying GPF:
min : Z, i(—41,—39,1,1)x,"x27x3'1 +(-22,-18,2,2) x, x, +(~22,-19,3,)x, x, X,,
1

st (0,2,1, )x72x;7 +(2,6,2,2)x2 x,' <(=,=,1,1), (13)

>

]
l—-[\_)|—n
|u_\[\,)|b)

(-41,-39,2,2)x7 x) ' x" + (=21,-19,1, 1) x? x? 2(—60,-50,6,6),
X, ,X,,x, >0,

Use the Roubens ranking function and apply Theorem 2.1 to (13), then the following GP

problem will obtain:
-1

e 1.7 -l _
min :z, =—-40x x> x; —20x, x; —-20x, x, x;,

1
-2,.-2 7 -l
sk, X x, +4xix; <1, (14)
1 3

—4Oxl"1x;]x3_' —20)(15 xz > =55

X, X, ,%, >0,

The optimal solution of (14) is (x;, x5,x3) = (1,1,2), with z, = -100, z,= -53.63585.
This is an R-pareto optimal solution for MGPF (12).

CONCLUSIONS

The parameters of mathematical programming models for many real world problems may

only be stated imprecisely and this leads to the formulation of mathematical programming
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models with fuzzy parameters. In this paper, a multiobjective geometric programming
problem in which parameters are fuzzy numbers is discussed. In order to define the concept
of R-pareto optimal solution for this problem, a linear ranking function for comparing
fuzzy numbers is used. A numerical example is given to clarify the theorems related to
the constraint method appeared in the paper.
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