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Abstract - In this paper, the advantage of reinforcement leaming to develop
a new traffic shaper is invoked in order to obtain a reasonable utilization of
bandwidth while preventing traffic overload in other parts of the network. This
leads to a reduction in the total number of packet droppings in the whole
network. The method is implemented in a novel proposed intelligent simulation
environment, Keeping dropping probability low while injecting as many packets
as possible into the network, 1n order to utilize the available bandwidth, shows
satisfactory behavior in simulation environment. On the other hand, the results
show that the system can perform well even in situations that have not been
previously introduced to the system.
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INTRODUCTION

Advances in high speed data transmission result in development of many new interactive
and real-time applications such as teleconferencing, distributed computation, etc. Due to
the heterogeneity of the sources of these new applications 1n terms of data types (i.e. The
applications require video, audio and data transmission.), the ‘best-effort’ Quality ot
Service (QoS) of current packet-switched networks such as Internet does not provide good
support for continuous transmission of data for these applications. Therefore, one needs
new effective congestion control methods to meet QoS requirements. These include
admission control, traffic enforcement and shaping, and scheduling schemes at the
intermediate switches. In the past several years, the control community has tried to
systematically model communication networks in order to thoroughly analyze their

structure, properties and behaviors. This has led to the development of several algorithms
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for congestion control, for example.

In a resource sharing packet network, admission control and scheduling schemes are
insuflicient to provide QoS guarantees. This is due to the fact that the users may, inadvertently
or otherwise, attempt to exceed the rates specified at the time of connection establishment
[1]. The traffic policing schemes proposed in the literature include mainly Leaky Bucket
(LB), Token Bucket (TB), Jumping Window (JW), Moving Window (MW), Exponential
Weighted Moving Average (EWMA) and associated variations. A performance comparison
among these schemes shows that the TB and the EWMA are the most promising mechanisms
to cope with short-term fluctuations and hence are suited for policing burst traffic [1].
Several improvements of the LB have been proposed for increasing utilization in an ATM
environment [2,3,4]. Traffic enforcement schemes supervise the source streams to check
whether their characteristics conform to the declared values throughout the connection.
Various schemes have been studied from the point of view of their capability to smooth
the burstiness in the source. Traffic Shaping, on the other hand, conditions the input stream
so that the characteristics are amenable to the scheduling mechanisms to provide the
required QoS guarantees [1,11]. Although, one may imply the other, there are subtle
differences. The former checks the conformance to the declared values whereas the latter
shapes it to be more agreeable to the scheduling policies.

There have been previous attempts to achieve an adaptive traffic shaper [1,5], but they
are highly dependent on traffic measurement. In previous work [12], the authors introduced
an intelligent traffic shaper in which a typical Q-learning was used to perform the traffic
shaping action. In that work, the traffic shaper was topologically dependent and thus unable
to adapt itself with undesired bandwidth changes, etc. In this paper, a topologically
independent adaptive and intelligent traffic shaper is proposed which learns the best
parameters for a token bucket at any arbitrary node of the network, at any given time, no
matter how the medium bandwidth changes. In addition, this new method uses no external
tool to measure traffic parameters.

In the following part, the proposed system model is given. Then, theoretical framework
of the learning agent is thoroughly discussed. In the fourth section, remarks are made on
using the networks infrastructure in order to get feedback information without overloading
the transmission lines with extra feedback packets and a reward evaluator is proposed for
the leaming of the agent. The proposed simulation framework 1s discussed thereafter.

Simulation results and concluding remarks are given in the last two parts of the paper.

THE SYSTEM MODEL

In this proposed traffic policing scheme, routers are categorized into two main groups of
Network Routers (NR) and Source Routers (SR) [12]. The SRs are those routers that are

connected to end nodes and NRs are those that are indirectly connected to each end node
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and act as connections between subnets (see Figure 1).
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Figure 1: The network mode! under consideration.

Each SR is characterized with a token bucket and buffer length of / (bits) and token
generation rate of g (bits/s). In this case, the source can only inject a complete data packet
into the network if there are enough tokens for a complete packet transmission, and tokens
are discarded if the token bucket overflows [1,5,12]. In case of bursty generation of packets,
if the total number of bits is larger than the tokens, then only the first few packets whose
lengths are smaller or equal to the total number of tokens can pass, and the others should
wait for the time when enough tokens are generated for them. The NRs are responsible
for generating information for the SRs which can adjust their parameters in line with the
goal of minimization of the packet loss probability in the network. To achieve this goal,
the parameters of the token bucket should be chosen in a way to make the loss as small
as possible. Therefore, a flexible mechanism for choosing the token bucket parameters,
g, 1s desirable [12]. To do so, an intelligent system is designed which learns the best g for
the token bucket in each state of the network. In this scheme, the action, a, determines g

of each SR, and can take a value between 0 and 100. The value of a is related to g as,

€ =a X gmax (1)
where g, is determined by
gmax.i = ij (2)

with Wj defined as the bandwidth of the medium connected to the jth port of the router
in which the traffic is shaped.

Network states are determined by two parameters: packet dropping percentage sensed
by ith SR at time #, namely p,;, and used buffer size to maximum buffer size ratio at the
sending port of SR; connecting to NR,,, namely byim. The reward ., is determined by how
effective was the action, g, at time t in changing the state from a worse one to a better one.
The reward takes a value between 0 to 1. This procedure is discussed in the following

sections. Figure 2 depicts a block diagram of the proposed system.
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Figure 2: Block diagram of the proposed system.

THEORETICAL FRAMEWORK

Modem reinforcement learning research uses the formal framework of Markov decision
processes (MDPs) [6]. In this framework, the agent and environment interact in a sequence
of discrete time steps, t = 0, /, 2, 3, .... On each step, the agent perceives the environment
to be in a state, s, and selects an action, a;. In response, the environment makes a stochastic
transition to a new state, s+, and emits a numerical reward, #.:€ [0,1]. The agent seeks
to maximize the reward it receives in the long run. For example, the most common objective
is to choose each action a, so as to maximize the expected discounted return,

E(Efn Yir) (3)
where v is a discount-rate parameter, 0 <y <1.

Reinforcement learning methods attempt to improve the agent's decision making policy
over time. Formally, a policy is to map the states to actions or to probability distributions
over actions. The policy is stored in a relatively explicit fashion so that appropriate
responses can be generated quickly in response to unexpected states. The policy 1s thus
what is sometimes called a “universal plan” in artificial intelligence, a “control law” in
control theory, or a set of “stimulus-response associations” in psychology. The value of
being in a state s under policy T can be defined as the expected discounted return starting
in that state and following policy . The function that maps all states to their values is
called the “state-value function” for the policy 7 and denoted as ¥ ™,

V) =Ex (S0 y rimls =5 ) (4)

The values of states define a natural ordering of policies. Policy T is said to be better
than or equal to policy * ifand only if ™ (s) >3d V" (s) for all states s. For infinite MDPs,
there are always one or more policies that are better than or equal to all others. These are
the optimal policies, all of which share the same value function.

The simplest reinforcement learning algorithms apply directly to the agent’s experience

interacting with the environment and change the policy in real time. For example, Watkins’
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Q-Learning algorithm [7,8], one of the simplest reinforcement learning algorithms, uses
the experience of each state transition to update each element of a table. This table, denoted
Q, has an entry Q(s, a) for each pair of state s and action a. Upon the transition s, —>Ss+1,
having taken action a, and received reward e, this algorithm performs the update as

below:

Q(S;,ar):Q(S/,ar)"'a Li+1+'YmaXQ(Sl+l. ar)_Q(St;al)J (5)

The algorithm described above is only the simplest reinforcement learning methods.
More sophisticated methods implement Q not as a table, but as a trainable parameterized
function such as an artificial neural network. This enables generalization between states
which can greatly reduce learning time and memory requirements. In this proposed method,
the latter type of Q-Learning is invoked due to the large size of action space [5]. Here,
the action is set the value of @ which can take a value between 0 and 700 and is calculated
as described earlier in this paper. These actions are related to generation rate, g, in each
SR by Equation 1.

Expert Netwaork |

Ouiput=ryy +iayot . 47,y
Exper Neiwaork 2

e
Expert Network a /

.
>

2

Gating Nciwork

Figure 3: Architecture of expert networks and gating network (from [9]).

Figure 3 shows several expert and one gating networks in a modular architecture [9].
The expert network architectures are equivalent, and in fact can be used as stand-alone
networks trained to learn the whole task. When used as part of a bigger modular network,
each competes to learn a sub-task instead of learning the whole task. In Figure 3, y;, i =
1, 2,..., n denotes the outputs of the expert networks. The gating network has the same
number of output units as the number of expert networks. The variable ¢, i = 1, 2,..., n
denotes the outputs of each output unit of the gating network. The values of z; are positive

and sum to one. The output of the entire network is determined by:
output =E,o Zi Yi (6)
In this way, the gating network determines how much each expert network should

contribute to the final output. The weights of a neural network being trained via

Q-learning are modified so as to maximize ¥'™ (s), the discounted cumulative reinforcement,
in Equation 3.
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Given a state s; and an action a, the system moves into a new state s,.+; and gets
feedback reinforcement r+s from the environment. The Q-function can be learned by the
following steps [9]:

1. Input vector is fed into the expert networks and the gating network.

2. The gating network selects ith expert network for that particular input state according
to the output value.

3. Let u be the current value of Q(s,, a) output by the ith expert network.

4. Let w’ be the ith expert network’s predicted value +1 +y max Q (s:41, a.).

5. Update the weights of the ith expert network to improve Q-function by back-propagating

the temporal difference error u'-u.

The gating network is able to learn both a decomposition of the whole task and the
control of each sub-task. This network takes the same input as what the expert networks
take. The last layer of this network computes the weighted sums of the outputs of the
hidden units. The weighted sum of the jth unit is denoted as qj:

"

4= Loy X Wy (7)
where m is the number of hidden units, and w; is the weight connecting output node j
and hidden unit output x;. Because the outputs of gating network have to sum to one, the
“softmax” activation function [9] is used in the second layer of the network to meet this

constraint. The ith output node is denoted as z;:

‘ _EeTj (8)

where n is the number of output units. During the training, the weights of the expert
networks and the gating network are updated at the same time using the back-propagation

with TD-error. This will lead to the maximization of the Q-function as time evolves.

STATES AND REWARD CALCULATIONS

To determine the current state of the system two parameters are used. The first is packet
dropping percentage sensed by ith SR at time ¢, p,. The second is the used buffer size to
maximize buffer size ratio at the sending port of SR;, connecting to NRu, by Calculation
of the latter is rather straightforward but for the former some problems arise. First, how
can one measure the parameter value? and second, after measurement, how can one transfer
this feedback information to the place that it can be used? To answer the first problem, it
1s assumed that the network supports the Explicit Congestion Notification (ECN) mechanism
[10] which has been proposed as a solution for conveying the congestion signaling rapidly
and explicitly to TCP senders. This mechanism is utilized for estimating p,; at SR;, because
the ECN mechanism marks packets instead of dropping them as a means of signaling

congestion. This mechanism marks packets as dropped with a probability proportional to
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network congestion.

Ideally, this feedback information should be conveyed from where the packet marking
has happened to the SR where it is utilized. However, it is impossible to communicate
directly with these routers without the aid of any additional signaling protocol, because
current IP networks do not have any signaling architecture for this feedback information.
Hence, one has to find a way to convey the information to the SR. The TCP ACK packet
can serve as a good transporter for this purpose [11]. If TCP receivers receive a packet
which is marked as dropped, they simply extract the flag from the IP header (Unused two-
bit subfield in the IPv4 Type-Of-Service (TOS) field or IPv6 Traffic Class (TC) field) and
copy them into the unused field in the TCP header of ACK packet in order to feed them
back to the TCP senders. Because the feedback information consists of only two one-bit
flags, this does not create a great deal of overhead. The SR;router checks the ACK packets
and counts how many of them are marked and calculate p,; at the end of each duty cycle
of the network,

_ Number of marked packets
PLi™ Total number of  pockets (9)

Having these two parameters and feeding them into a state detector, the current state

of the network can be determined. These states are shown in Figure 4.
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Figure 4: State plane of the network.

To calculate reward one may follow the simple rule

d[_dHI dr+1<d1
reg =y % (10)
0 dy =d

where d is calculated as below:

=\ P+ bim (11)
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Here py,, 1s dropping percentage that is sensed by SR; in which the traffic 1s shaped
at time ¢, and by 1s current buffer size to maximum buffer size ratio at ith Source Router

which 1s connected to mth Network Router with the link jm.

SIMULATION FRAMEWORK

To achieve the goal of designing a precise model of the system capable of simulating real
dynamic behavior of the real network systems, It is assumed that mediums, LANS, routers
and packets are as entities that exist in large high speed networks. Each unit contains its
own essential sub-units.

Each unit has its own responsibilities, behaviors, parameters, limitations, etc. This
defines the nature of that unit. For example, routers contain different numbers of ports
where each port has its own buffer size, and token generation unit with responsibilities
such as routing, sending packets, receiving packets, etc. Taking into consideration the
resource restrictions, it 1s tried to split each unit behaviors into separate modules and define
them in functions which are as much independent as possible and do not encounter lack
of essential resources. This independency of modules (with essential interactions among
them) provides the user with the chance to change the specific behaviors of each unit only
by redesigning the desired module and without the need to redesign the whole model. This
feature helps simulate desired network under different circumstances such as different
routing algorithms, different traffic shaping policies and other aspects. Besides, a great
access to desired details of each unit and modules will become possible. On the other
hand, new developments and inventions can be verified through a simple task of

reconsideration in a small number of modules.

- SIMULATION METHODOLOGY

Different methods can be used in simulation of high speed networks. Discrete Event
Simulation (both time driven and event driven simulations) can be proposed for this matter
[14,15,16]. On the other hand, process emulation method may also be used, but it may
inherit the non-suitable performance due to overhead associated with creating a large
number of processes. Then communication ameng them becomes prohibitive as the model
size increases [16].

The invoked method in this paper for simulating large high speed networks is an
intelligent agent-based approach. This method will not encounter any prohibitions due to
overhead associated with creating processes and communicating among them. Besides,
it omits the need for a large number of events that are listed in event lists, which can
become prohibitive in large scale systems that may have thousands or more numbers of

events scheduled in the event-list.
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Both Discrete Event Simulation and intelligent agent-based approach will be studied

in the following.

- -Discrete Event Simulation

Typically, performance modeling involves the simulation of different system states
which are represented by the presence or absence of countable units, such as jobs, requests,
processes, packets, users or errors. A new state can only be entered through the execution
of an event that modifies one or more of these units. Here, the state change involves a
specific number of discrete events and, therefore, this type of simulation is generally
referred to as Discrete Event Simulation [14,15].

This method can be implemented in two ways, time driven method and event driven
method. In time driven method, one has a set of events F that contains all plausible events
that can be executed in the current time. If E is null, it means there 1s no plausible event
for the present time. In each time ¢ an event e will be chosen from set of E and will be
executed. Each event has some consequences that can be appeared as new events in the
set of E. In a large scale network, where thousands of packets are transmitting between
their sources and destinations, set £ can contain large number of events and it has to
choose between them on a random basis. On the other hand, it requires complex programming
of the system to enable it to know all of the future events and their desired time of execution.

In the event driven method, events are scheduled for the various future instances of
time at which they will be executed. Each event e has a time of #(e) at which the event
has to be executed. At the trigger of the clock, all of the events with the occurrence time
equal to present will be executed and the execution of each event can result in generation
of new events which will be scheduled as well and they will be placed in the event list.
This method has the same problems of resource restrictions and complexity in the
programming as the time driven method [14,15,16].

In the event driven method, the scheduling aspect system results in new consideration
in designing of the system. Two methods of post-scheduling and pre-scheduling have been
proposed for this matter and the consequence of both of them is the complexity of the
program (for more information refer to [14,15,16]).

- - Intelligent Agent Based Method

In the used method here, each entity was designed as an intelligent unit with each
essential behavior, responsibility, parameter, restriction, etc. As a consequence, each unit
1s completely capable of handling its tasks and needs. In a higher level, we designed a
Network class for this system 1n a way that it has relationship with all of the entities within
the system and it takes the responsibility of communicating between them. In another

word, 1t plays the role of the spinal cord of the system.
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There is no need for memory-consuming event lists and complex programming. Each
unit has complete ability to render the processes and in case that it needs any information
from the other entities (i.e Relationships that really exist in real network systems.) The
information can be achieved through the Network class of the system. When different
units generate packets, the responsibility of passing on these packets between units is on
the network class but it does not mean that the network class does the routing task. All
the decisions are taken by the units themselves and routers decide and determine the path
of the packet. The units decide on what to do with the packet (depending on their defined
responsibilities and policies). Then they hand the packets to the network class and direct
1t to hand packets over which of its neighbors. The next neighbor determines the next step
for the packet and again delivers it to the network class to pass it on.

In this approach, one has avoided the memory-consuming lists of the other methods
and limited the memory usage only to the memory that is used for saving the units
information. Other tasks are all done by the intelligent and well-defined units. This
specialized manner helps make fundamental changes in the behavior of the system (routing
algorithms, traffic shaping policies and etc.) through simple changes in the specialized
functions of each class of units.

SIMULATION RESULTS

In this section some simulation results are provided. The simulation environment was
briefly explained in the previous section and is also available from an earlier work [13].
To perform the simulations, an intelligent traffic shaper (Introduced in the third section)
was added to the SR routers object. In the followings, simulation results from three different

scenarios are presented.

- EXPERIMENT 1

In this experiment, the performance of the method is studied in reaction to 3 types of
burstiness that may happen in a network. At first, the system reaction to sudden rise in
input flow rate of Source Routers is studied (i.e. These are connected directly to the end
nodes.). In the second test, the system behavior to a flow rate increase-decrease is monitored.
At last, the system reaction to a sudden decrease in input flow rate of Source Router is
observed. In each case p,; 1s measured and results are depicted in Figures 5 to 7. The results
show that the system can keep dropping percentage low while it keeps the used buffer size

as small as possible. The simulated network 1s presented in Figure 8.
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- EXPERIMENT 2

In the previous experiment and [12], it has been shown that the proposed traffic shaper
works in a reasonable manner in those networks that has no bottle neck. Here, the
performance of the traffic shaper is studied at the presence of a bottle neck in a network
like the one which is depicted in Figure 9. The response to a random input flow rate is
presented in Figure 10. As it can be seen from the figures, although bottleneck exists, the
intelligent traffic shaper has managed to keep the discarding probability as low as possible,

while utilizing available bandwidth in a reasonable fashion.
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- EXPERIMENT 3

In this experiment, the effect of a medium change on the performance of the traffic shaper
is investigated. To do so, the intelligent shaper is trained for the environment depicted in
Figure 11. Then, the medium indicated by arrow is replaced with a medium with maximum
bandwidth of 100 Mb/sec. Discarding percentages in the network and available bandwidth
utilization in the discussed medium to two different input flowrates are presented in Figures
12 and 13.

As it 1s clear from these figures, one can see that the traffic shaper shapes the traffic

regardless of the difference of the test environment from its original training conditions.
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CONCLUSIONS

A new adaptive and intelligent traffic shaper was proposed in this paper. The aim was to
obtain a reasonable utilization of bandwidth while preventing traffic overload in other
parts of the network and as a result, reducing the total number of packet droppings in the
whole network. The intelligent agent trains to learn an appropriate value for token generation
rate of a Token Bucket at various states of the network. The results show that the system
can keep the dropping percentage low while it keeps the used buffer size as small as
possible. Besides, it has been shown that the proposed traffic shaper can perform well in
those new scenarios that have not been previously introduced to. Implementing the method

on a real network will be done in future studies.
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